

SuSE Linux Cluster Solutions: Experience with the Asgard Cluster at ETH Zürich

Matthias Troyer
Department of Physics
ETH Zürich

Overview

- Motivation: why a Beowulf cluster?
- Experiences with WTO procurement
- The "Asgard" Beowulf cluster at ETH Zürich
 - ◆ Hardware: 192 Dual-CPU Pentium III CPUs, 1 Gigabyte RAM each
 - Operating system and software: SuSE Linux

- User projects
- User experiences

Motivation / situation in fall 1998

- Increased need for simulations in physics research
 - Strongly correlated electron systems in condensed matter physics
 - Monte Carlo simulations in particle physics
 - PDE solvers in all areas of physics
- Downscaling of centralized computing resources at ETHZ
 - Intel Paragon decommissioned, no replacement planned
 - Upgrade of vector supercomputers uncertain
 - No plans for new centralized supercomputing resources
- Solution: Beowulf cluster for Department of Physics

Why a Beowulf cluster?

- Existing simulation codes perfectly parallelizable
 - Monte Carlo simulations
 - Series expansions
 - Other simulations that need to be repeated many times for different parameters
- Education in "Computational Sciences and Engineering"
- Development of new parallel simulation codes
- We need a machine with
 - Large computing power
 - Small to moderate communication needs
- The ideal solution is a Beowulf cluster

History

- Winter 1998/1999: Feasibility study for a Beowulf cluster for the Department of Physics at ETH Zürich
- March 1999: The Department of Physics submits a proposal to the ETHZ executive board to start a competition for the procurement of a Beowulf cluster.
- May 12, 1999: Start of the WTO government procurement procedures for a Beowulf cluster.
- July 8, 1999: Deadline for submitting a tender
- Summer 1999: Evaluation period. The offered systems vary considerably as was to be expected.
- Summer 1999: The Department of Mathematics joins the project

History (continued)

- Sept. 13-17, 1999: Negotiations with all suppliers, with fixed technical specifications.
- October 14, 1999: Decision to buy the system offered by <u>DALCO</u> <u>electronics</u> is published
- November 8, 1999: Contract with <u>DALCO electronics</u>.
- ♦ Dec. 20-23, 1999: Delivery of the complete system to ETHZ
- January March, 2000: Acceptance tests.
- March 21, 2000: All acceptance tests are fulfilled.

WTO procurement procedure

- Necessary for all purchases of more than about 250'000 CHF
- Experiences
 - Requirement to have service and support in Switzerland eliminated all overseas companies from the competition
 - ♦ 23 companies requested documentation
 - Only four tenders submitted
 - Call for tender
 - ♦ Memory, network and file server capacity was specified
 - ♦ CPU type and number of nodes not specified, but approximately 50 Gigaflop sustained performance requested
 - ♦ Benchmarks with user programs to be reported in tender. Greatly varying tenders required additional negotiations for a system with fixed specifications
 - Complex rules: legal advice essential
 - Competition allowed to get lower prices
 - Added a 6-month delay
 - ♦ Still possible to get up-to-date system
 - ◆ Delays led to sharp rise in RAM prices and finally 35% higher costs

Alpha vs. Pentium

- Benchmarks with user programs relevant for decision
 - Loopsim: Quantum Monte Carlo simulation in condensed matter physics
 - ♦ Mostly integer arithmetic
 - Transfer: Transfer matrix simulation in statistical physics
 - Double precision floating point and integer operations
 - Trajek: Monte Carlo simulation in particle physics
 - ♦ Single precision floating point and integer operations

	wallclock time [sec]			Price/performance			
				normalized	to Pentium	systems	geom.
	loopsim	transfer	trajek	loopsim	transfer	trajek	mean
667 MHz Alpha EV6	1791	36	1569	2.43	1.31	1.83	1.80
500 MHz Pentium III	2898	108	3363	1.00	1.00	1.00	1.00
333 MHz UltraSparc	3618	170	6318				

Conclusions

- Alpha systems consistently faster
- Pentium system offers much better performance at same price
- Linpack-performance irrelevant for our applications

The Asgard cluster

- 192 compute nodes
 - Dual-CPU 500 MHz Pentium III
 - Intel N440BX motherboards
 - 1 Gigabyte RAM
 - 6 Gigabyte IDE hard disk
- Network
 - 24 nodes connected by Fast Ethernet to a switch
 - ♦ 8 Fast Ethernet switches connected by Gigabit Ethernet to Gigabit switch
- Software
 - SuSE Linux 6.3 + cluster management software by SuSE
 - Complete software installation done by Anas Nashif of SuSE

Schematic layout

- Gigabit Ethernat backbone with
 - Eight "frames" with compute nodes
 - Login node
 - Connection to "meta-cluster"
 - File server with
 - User home directories
 - ♦ User software

- Compute frames
 - 24 dual-CPU nodes
 - Connected to Fast Ethernet switch
 - One node is "slave server"
 - /usr and root directories
 - ♦ Boot server

Hardware installation by Dalco electronics

The complete system

The queue structure

Small: up to 8 nodes (16 CPUs), 30 minutes

• Medium: up to 24 nodes (48 CPUs), 60 minutes

◆ Large: up to 96 nodes (192 CPUs), 8 hours

• Runner: up to 1 node (2 CPUs), 24 hours

Midnight: up to 24 nodes (48 CPUs), 4 hours

• Creeper: up to 1 node (2 CPUs), 99 hours

for testing and debugging

for testing and debugging

for parallel jobs

for single-node jobs

for short jobs at night

low priority jobs using idle time

Weekends: possible to use whole machine: 192 nodes, 384 CPUs

User projects

- Theoretical physics
 - Quantum phase transitions
 - Nonlinear Schrödinger equations
 - Vortex matter
- Particle physics
 - Detector simulations for AMS and CMS large scale experiments
 - Simulation of high intensity particle beams
- Astrophysics
 - Simulation of relativistic plasma plasma waves
- Education
 - Course in "parallel computing"
 - Semester, diploma and doctoral theses in physics, mathematics and computational sciences

Simulations for the AMS experiment

- "Alpha magnetic spectrometer" measures charged cosmic radiation
- Will be installed on the International Space Station
- Prototype was flown as main-experiment on board of space-shuttle 'Discovery' on mission STS91 (June 1998)
- Simulations of tracks of charged particles in earth magnetic field
 - essential for evaluation of measurements

Benchmark of relativistic PIC code

- par-T: A Parallel Relativistic Fully 3D Electromagnetic Particle-in-Cell Code
- ◆P. Messmer, Institute of Astronomy
- Fixed problem size

◆ Problem size scales with N_p

Scales well on Beowulf architecture

Tests of communication bandwidth and latency

- W.P. Petersen and A. Friedli
- Test performed in the course "parallel programming"

 Bandwidth and latency estimated from timing of ping-pong test for various message sizes using MPICH

Language	Latency	Ban dwi d lh
Fort ran	5 0 0µS	9 MB/s
С	208µS	1025 MBs/

Experiences in the first four months

- Hardware problems
 - Replacements of 3 defective nodes in the first six weeks
 - 26 unexpected reboots of single nodes necessary in first four months; reasons unknown.
- Very positive user experience
 - Performance and reliability exceed expectations
 - Fast Ethernet completely sufficient for our current applications
 - Ideal system for development and optimization of parallel programs
 - Ideal for teaching no problems despite 25 students on the system
- Bottleneck is disk-I/O at file server
 - Extremely slow when many nodes read/write at the same time
 - Separate file servers for user home directories and simulation data preferable
 - can a parallel file system help?

Summary

- Beowulf architecture exceeded our expectations
 - Pentium CPUs had better price/performance for our applications
 - 100 Mbit Ethernet sufficient for more problems than expected
 - Ideal system for our simulations
- No problems with acceptance tests
- Good experiences with software installation by SuSE
- Disk-I/O at central file server is main bottleneck